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The properties of cardinal splines satisfying a linear recurrence relation and
interpolating given data are studied. A necessary and sufficient condition is
obtained for the existence of a unique cardinal spline of given degree fulfilling
these requirements. The limiting behavior of such a family of splines as the degree
tends to infinity is determined.

1. STATEMENT OF THE PROBLEM

In several recent papers, Schoenberg [6-8] has studied cardinal splines of
degree n that satisfy

Sex + 1) = tS(x) (Ll)

for some fixed t and for all real x, and also interpolate at the integers the
exponential function t ro• By a cardinal spline of degree n we mean a piecewise
polynomial function Sex) of degree n and continuity class en-I, defined on
the real line and such that discontinuities in s(nl(x) occur only at the integers.

Schoenberg has shown [7, 8] that there is a unique cardinal spline of
degree n, called the exponential Euler spline, satisfying these two conditions
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so long as t is not a zero of the Euler-Frobenius polynomial [6, 8] of degree 11.

I: t is equal to one of these zeros (called eigenvalues for the degree n), there
is no cardinal spline satisfying (Ll) and interpolating t'e at the integers.
However, there do exist only for these values of t the eigensplines, which
satisfy (Ll) and also the condition

S(v) = 0 (v = 0, ±l, ±2, ...).

in this paper we consider a generalization, which will now be describe6.,
of the problem solved by Schoenberg. Let {yJ~x be a sequence of reals such
that

k

L Gjyjc-" = 0
j~O

(1.2)

for all integers v, where the coefficients aj are fixed real numbers, and
a,pl: ~ O. Let h be a fixed real number in the half-open interval [0, 1). We
then propose the following

PROBLEM. To construct a cardinal spline Sex) of degree n that interpolates
the data-sequence {yJ at the arguments v + 11, i.e.,

S(v + h) =)'"

for all integers )J, and also satisfies the functional equation

k

I GjS(x +j) = 0
j~O

(1.3)

(1.4)

for all real x.
We shall show in Section 2 that the solution of the problem depends on the

zeros of two polynomials. One is the characteristic polynomial of the recur­
rence relation (1.4), which is

The other is

k

P(u) = L GjU
j

j~O

(1.5)

n

Rn.,,(u) = L Qn+l(J + h) u'H,
j~O

(1.6)

where Qn+l(x) is the "forward B-spline" of degree 11 (see [7, 8]). For h = 0
this reduces to Ojnt)IIn(u), where IIn(u) is the Euler-Frobenius polynomial
of degree n - 1. We shall find that the problem stated has a unique solution if
and only if P(u) and Rn.,,(u) have no common zero. Clearly this is a plausible
generalization of Schoenberg's result.
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For h = 0, we have interpolation at the knots. For P(u) = u - A, h = °
or t, the problem reduces to the cases studied by Schoenberg [7,8].

Let Yn,p denote the class of cardinal splines of degree n satisfying (1.4).
We shall show in Section 3 that when P(l) =F 0, there exists a cardinal
spline S*(x) EO 9".n.P that is represented in [0, k] by a single polynomial
(i.e., the expected knots at 1, 2, ... , k - 1 are absent). In Section 4 this
special cardinal spline S*(x) is shown to lead to a basis for the class Yn,p .

Of particular interest is the case of P(u) = (u - t)k and h = 0, which
leads to the exponential Euler splines of higher order treated in Section 5.
In Section 6 we study the convergence when n ~ CJJ of the interpolatory
splines in Yn,p satisfying (1.3) with h = 0.

2. THE MAIN RESULT

The forward B-splines Qn+1(x) have been thoroughly studied in [6, 7].
Every cardinal spline S(x) of degree n is known [4] to have a unique represen­
tation of the form

We now formulate

00

S(x) = L cvQn+1(x - v).
v=-oo

(2.1)

LEMMA 1. A cardinal spline Sex) of the form (2.1) belongs to Yn,p if and
only if

k

L ajcv+j = °
j~O

for every integer v.

Proof We have

k k 00

I ajS(x +j) = L aj L CvQn+1(X + j - v)
j=O j=O /.1=-00

00 k

= L Qn+l(X - v) L ajCv+i .
j~O

(2.2)

The last expression vanishes for all real x if and only if (2.2) holds for all
integers v. I

Using the relations

Qn+1(x) = (ljn!)L1n+1(x - 11 - 1)~
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(x - I! - 1)1 = (x - 11 - l)(x - n - l)~-l

x+ = max(O, x) = t(x + I x I),
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(n = 1,2,...), (2.3)

and applying to (2.3) the formula for the (n + l)th finite difference of a
product, we obtain, after some simplification, the recurrence relation

Qn+l(X) = (lln)[xQn(x) + (n + 1 - x) Qn(x - 1)), (2.4)

valid for all real x. This is also a particular case of the recurrence relation for
B-splines with general knots due to de Boor, Mansfield, and Cox [1, 2]. From
(1.6) and (2.4) we deduce the recurrence relation

R (v) - -R ( ) - 1 - x [(1 - h) R ('...L R' ( -)1n,1! A X n-I.I! X - n n-~.h X) I X n-l,Il\X_,

which will be used to prove the following lemma.

(2.5)

LEMMA 2. For n = 1, 2, ... , the zeros of Rn,iu) are simple and negative.

Proof For h = 0,

Rn,o(u) = (lIn!) IIn(u),

and the zeros of IIn(u) are known to be simple and negative [7, 8].
For It > 0, we follow Schoenberg, using induction on 11, and suppose that

the zeros of Rn_u(u) are

Then, it follows from (2.5) that

(j = 1,2,... ,11 - 1).

Since Rn,,,(O) = Qn+l(l - h) > 0, it follows that (-l)i-l R~_l,h(Aj) > 0
for all j, and therefore

(j = 1,2,... , n - 1).

Since the coefficient of un in Rn,,,(u) is Q"+l(h) > 0, it follows that Rn.,,(u)
has a zero in each of the n intervals
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R1,h(u) = hu + 1 - h,

the induction is complete. I
In the proof of the following theorem it will be convenient to use the

so-called displacement operator E of the calculus of finite differences defined
by

Ef(x) = f(x + 1)

for every functionf Then (1.4) can be written as

peE) Sex) = 0. (2.6)

THEOREM 1. Given a real polynomial P(u) of the form (1.5) and a sequence
{Yv} satisfying (1.2), there is a unique cardinal spline Sex) E Sl'n,P satisJj7ing
(1.3) ifand only if P(u) and Rn,h(U) have no common zero.

Proof If such a cardinal spline Sex) exists, it has a unique representation
of the form (2.1) with coefficients Cv that satisfy (2.2), by Lemma 1. We
then have

(2.7)
L'=-O')

for all integers j.
Conversely, if there exists a sequence {cv} satisfying (2.2) and (2.7), then

(2.1) exhibits a spline Sex) having the required properties.
Consider now the more limited system of equations

(j = 0, I, ... , k - I)
1'=-00

k

L avcv_; = °
1.'=0

(j = 1. 2'00" n).

(2.8)

In view of the limited support of QnH(X), (2.8) is a linear system of n + k
equations in the n + k unknowns, c_n , C-nH , .•. , Ck-l' Moreover, it is
equivalent to the more extensive system consisting of (2.2) and (2.7), since,
because aOak =1= 0, the recurrence relations (1.2) and (2.2) can be used to
extend the equations uniquely to all j.

Thus, a spline Sex) having the required properties exists if and only if the
square matrix of coefficients of (2.8) is nonsingular. This is the case if and
only if the corresponding homogeneous system has only the trivial solution
in which all the unknowns vanish.



SPLINES SATISFYING A RECURRENCE 205

Now, the existence of a solution of the homogeneous system is tantamount
to the existence of a sequence {cv} satisfying both the difference equations
peE) CI, = 0 and Rn,h(E) Cv = 0 for all integers v. Let fLl, ~{2 , .•. , P.n be the
zeros of Rn.n(u). Since they are distinct by Lemma 2, a solution Co of
Rn,h(E) Cv = 0 must be of the form

n

tv = I Ajp./.
j~l

Consequently,

n

peE) cI, = I AjP(p.;) fL" = 0
j~l

for all integers v. Since the p.j are distinct, this implies

(j = 1,2,... , n).

Now, if P(u) and Rn,iu) have no common zero, P(p.j) -=1= 0 for aU} and so
Aj = 0 for all j. In other words, Cv is the trivial solution.

On the other hand, if P(u) and Rn,h(U) have a common zero, then for
some j, say j = d, P(P.d) = O. Thus,

is a nontrivial solution of the homogeneous system. I

EXAMPLE 1. Consider the Fibonacci sequence

l' i -4 -3 -2 -1 0 1 2 3 4 5 6

-i--------------
j, I -3 2 -1 1 0 2 3 5 8

satisfying the recurrence relation

fH2 - jj.a - Ii = 0

for all j. The characteristic polynomial

P(u) = u2 - U - 1

has the zeros
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We apply Theorem I to construct the interpolating spline function Sn(x)
satisfying

for all real x. For this we have to show that pelt) andII,,(u) have no common
zero. This we see as follows: P(u) and IIn(u) are polynomials with rational
coefficients and P(u) is irreducible over the rational field. If they had a
common zero, then pelt) would have to be a divisor of II,,(u), which is
impossible because it would follow that JI,,(u) has the positive zero III .

Hence, by Theorem I, for every natural number n there exists a unique
cardinal spline function Six) of degree 11, such that

for all integers v. We call Sn(x) the Fibonacci spline of degree n.
Sn(x) is uniquely defined in [0, 2] by the n + 2 conditions

Sn(O) = 0, Sn(1) = 1, SnC2) = 1,

(r = 1,2,... , n - I).

Solving these elementary problems for n = 2 and n = 3, we find that

S2(X) = 4x - 3x2 + 5(x - I)~

S3(X) = (1/11)[- 6x + 36x2 - I9x3 + 31(x - I)~]

3. THE POLYNOMIALS AnCx; P)

We begin by proving

(0 ::s;; x::S;; 2),

(O::S;; x::S;; 2

LEMMA 3. Let P(x) be given by (1.5) with P(1) =F 0. Then, for every
integer n > 0, there is a unique monic polynomial An(x; P) of degree n such
that

peE) An(x; P) = P(1) x".

The polynomials Aix; P) are given by the generating function

00 z" eXZ pel)I Aix; P), = -pcZ) .
n~O n. e

(3.1)

(3.2)
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Proof Let the polynomials A,,(x; P) be defined by (3.2). Since P(1) =1= O.
P(l)/P(ez) has a formal expansion of the form

It follows that An(x; P) is in fact a monic polynomial of degree 11. Moreover,
since

peE) eX: = Pee") eXz
,

it follows from (3.2) that (3.1) holds for each 11. This proves the existence of
polynomials having the required properties.

If there are two different monic polynomials of degree n, A,,(x; P) and q(x),
satisfying (3.1), then

P(E)(A,,(x; P) - q(x» = 0,

which is impossible, since

peE) XV = P(l) XV + .... •
Remark 1. It follows easily from (3.1) or (3.2) that the polynomials

{A,,(x; P)} form an Appell set, i.e.,

Ao(x; P) = 1.

Relation (3.2) leads to a recursive method for obtaining A,,(x; P) explicitly.
In fact, multiplying both sides of (3.2) by P(eZ

), differentiating with respect
to z, and setting z = 0 gives

n (n)L . A,,_lx; P)[P(E) xj]x~o = pel) xn.
j=O J.

Remark 2. If P(l) = PI(I) = '" = p(m-ll(I) = 0, p(m)(l) =1= 0,
we define the polynomials by the relations

peE) An(.l(; P) = n(n - 1) .. , (n - 111 + 1) x,,-mp(,nl(J),

or by the generating function

EXAMPLE 2. If

(3.3)

then

(3.1a)

(3.2a)

P(u) = u -.!!....,
I-a

a*, 1,



208 GREVILLE, SCHOENBERG AND SHARMA

then
[peE) xj]x~o = 1

= (1 - a)-1

(j = 0)

(j = 1,2,...),

and (3.3) reduces to

1 ", n)
A,,(x; P) = xl! + ----=-1 I (. Alx; P).

a j~1 ]

On the other hand,

1 - a ' LI )-1
A,,(x; P) = [P(E)]-1 x n = E _ a xl! = (1 - a-I xn

gives

(3.4)

n

An(x; P) = L (a - l)-v L1 vx n

v=o

It is easily verified that (3.5) satisfies (3.4).

(n = 0, 1,...). (3.5)

EXAMPLE 3. Taking P(u) = u - 1 in (3.2a), we have the well known
relation for Bernoulli polynomials,

00 z" zeZX
" B(x)----n'::o n n!-ez-I'

The relation between the polynomials An(x; P) and the cardinal splines of
/7n ,p is brought out by

THEOREM 2. Given a polynomial P(u) of the form (1.5) with P(1) = 1,
there exists a unique cardinal spline Sex) E !/n,P that coincides on [0, k] with
A,,(x; P) of Lemma 3.

Conversely, ifS(x) E !/n,P and is represented on [0, k] by a single polynomial
qnCx) (i.e., the expected knots at 1,2'00" k - 1 are absent), then qn(x) =
cAnCx; P)for some constant c.

Proof Since aoa", =1= 0, the restriction to [0, k] of the polynomial A,,(x; P)
has a unique extension to the entire real line by means of the recurrence
relation (1.4). To prove the first part of the theorem, it is sufficient to show
that this unique extension belongs to cn-I, and therefore to !/n,P . As a first
step, we show that the knot at x = k is simple.

Indeed, if Sex) denotes the unique extension, it follows from (1.4) and (3.1)
that for x E [0, I],

Sex + k) = An(x + k; P) - aj/x",

since P(l) = 1. This shows that the extension to (0, k + 1) belongs to en-I.
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Now, it follows from (1.4) that

k

L ajUump of serl(x) at x = v + j) = 0
;~O
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for every integer v and every nonnegative integer r. Therefore, since alPk =f:- 0,
and the jumps of the first n - 1 derivatives of Sex) at x = L 2, ... , k vanish,
it can be shown by induction on v that Sex) and its first 11 - 1 derivatives are
continuous at the integers.

On the other hand, let Sex) E 9'n,P and let Sex) = q(x) in [0, k], where
q(x) E 1T n . We use 1T.n to denote the class of polynomials of degree n or less.
For x E [k, k -+- 1], we have

Sex) = q(x) + c(x - k),,-

for some real c. Then, (1.4) implies

(x E [0, iD, (3.6)

from which it follows that (3.6) holds for all real x. By Lemma 3,

where C1 is some constant. I

4. A BASIS FOR Y",p

Let S",p(x) denote the cardinal spline of the class 9'n,P that is represented
on [0, k] by the polynomial Aix; P). This unique spline has a useful property
which we formulate in

THEOREM 3. With P(u) given by (1.5) with P(l) =f:- 0, there do not exist
real constants bo • b1 , •.• , hz , bob l =f:- 0, I < k, such that

1

I bjS"Ax +j) = 0
J=O

for ali real x.
Consequently, the k splines,

constitute a basis for !?n,P .

(4.1)

(4.2)
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In other words, this theorem says that SnAx) does not satisfy a linear
recurrence relation of order less than k, and the k translates (4.2) form a basis
for Y'n,P'

Proof Let I be the smallest integer for which a relation of the form (4.1)
holds, and let

I

B(u) = I bjuj
•

j~O

Then, it follows from Lemma 1 and from the theory of linear difference
equations with constant coefficients that the set of zeros of B(u) is a subset
of the set of zeros of P(u). But (4.1) implies, in particular,

I

L bjAn(x + j; P) = 0
j~O

(x E [0, 1]), (4.3)

and so (4.3) is an identity for all x. Thus, the coefficient of xn in (4.3) must
vanish, i.e.,

I

L bj = B(l) = O.
j~O

That is, 1 is a zero of B(u) and hence of P(u). This contradicts the hypothesis
that pel) =1= O.

By Lemma 1, a basis for Y'n,P has exactly k elements. Since there is no
linear recurrence of the form (4.1) with I < k, the k splines (4.2) are linearly
independent and hence form a basis for Y'n,P • I

EXAMPLE 4. If P(u) = u2 - U - 1,

SaAx) = x3 + 3x2 + 15x + 31 (0 ~ x ~ 2), (4.4)

while SaAx) is extended to the remainder of the real line by means of the
recurrence

SaAx + 2) - SaAx + 1) - SaAx) = 0,

which holds for all real x. Replacing x by x + 1 in (4.4), we find that in [0, 1],

SaAx + 1) = xa + 6x2 + 24x + 50.

Therefore in [0, 1],

- ~~ S3,P(x) + ~~ SaAx + 1) = 1\ (-19xa+ 36x2
- 6x),
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which agrees with the expression given in Example 1 for the Fibonacci spline
of degree 3. In fact, for all real x, the Fibonacci spline Ss(x) is given by

50 31
Ss(x) = - TI SsAx) + TI SsAx + 1).

5. EXPONENTIAL EULER SPLINES OF HIGHER ORDER

In [7] Schoenberg has studied in great detail the cardinal splines Sn.pcx)
in the particular case in which peE) is of the form E - t. These are called
exponential Euler splines and have many interesting properties.

A natural generalization is the case in which

peE) = (E - tyH, (5.1)

where t is a constant (not 0 or 1) and r is a given positive integer. We shall
call a cardinal spline satisfying (2.6) with peE) given by (5.1) an exponential
Euler spline oforder r. We shall call t the base of the exponential Euler spline.
Such a spline interpolates at the integers data of the form {p(v) tv}, where
p(v) is some polynomial in v of degree r. (This use of the term "order" differs
from that of some writers, who define the order of a spline as one more
than the degree.)

The polynomials associated with these splines by means of Lemma 3 will
be called exponential Euler polynomials oforder r. For t = -1 (see [5]), they
are the standard Euler polynomials of higher order. We shall denote by
An,lx; t) the polynomial An(x; P) in the case when peE) is given by (5.1).

It follows from Lemma 3 (and especially from the uniqueness of the
polynomials A,,(x; P)) that

and
(E - t)'H AnAx; t) = (l - t)'+l x n

(E - t) AnAx; t) = (l - t) An.r-l(x; t)

(n = 1,2, ...)

(r = 1, 2, ...).

(5.2)

(5.3)

The following lemma will be utilized in the convergence proof of the next
section.

LEMMA 4. The polynomials An.r(x; t) satisfy the recurrence relation

(r + 1) An.rH(x; t) = ((t - l)jt)[AnH.,.(x; t) + (r - x + 1) An.r(x; t)l

(r = 0, 1,...). (5.4)

Proof The proof will be by induction on r. For r = 0, (5.4) becomes

An.lex; t) = ((t - l)jt)[A nH.o(x; t) + (1 - x) An,oCx; t)l. (5.5)
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Both members of (5.5) are polynomials in x of degree 11. It will therefore be
established if we can show that operating on both members with E - t yields
an identity. An easy computation using (5.2) and (5.3) shows that this is the
case.

Now, suppose (5.4) holds for r = I, and consider the corresponding
relation for r = 1+ 1. Again, both members are polynomials in x of degree
n, and the relation is established if operating with E - t yields an identity.
In fact, operating on the right member and using (5.3) gives

«t - l)jt){(l - t)[A n+1,b; t) + (1- x + 1) An,I(X; t)] - tAn,I+1(X; t)}.

Under the induction hypothesis, this reduces to

(1 - t)[(1- 1) An,I+1(X; t) + A n,I+1(X; t)]

= (E - t)[(1 + 2) A n ,I+2(X; t)],

and the induction is complete.
It is not difficult to show that the polynomials AnAx; t) have the further

property that

It follows from Lemma 1 that a given exponential Euler spline Sex) of
degree n and order r has a unique representation of the form

Sex) = I q(v) tvQn+1(X - v),
V=-CG

(5.6)

where q(v) is a polynomial of (strict) degree r in v. One may ask what is the
relationship between q(v) and p(v), where p(v) tV is the function interpolated
by Sex) at the integers v. In order to elucidate this relationship, we shall need
a suitable basis for the space of exponential Euler splines of degree 11 and
order r. To this end, let S;,r(x; t) denote the unique exponential Euler spline
of degree 11 and order r that interpolates {(~) t H '},

Evidently S;,o(x; t) is merely the exponential Euler spline Six; t) of [7, 8].
It is also clear that S;,o(x; t), S;,l(X; t)" .. , S;".(x; t) are a basis for the space
of exponential Euler splines of degree 11 and order r. Moreover, it is easily
verified that

(E - t) S~,r(x; t) = S~,."_l(X; t). (5.7)

We wish to allow for the possibility that t may be complex. When this is
the case, an exponential Euler spline of degree 11 and order r is a complex­
valued function of a real variable. The latter fact, however, does not materially
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change the properties of this cardinal spline. It is, as always, uniquely
determined by the (complex) values {p(v) t''} that it interpolates at the
integers.

From the definition of the Euler-Frobenius polynomials, it is easily deduced
that

For a fixed x, the last expression in (5.8) may be regarded as an analytc
function of the complex variable t. Its poles are at the origin and the zeros
ofIIn(t), all of which are known to be negative. Therefore, Sn(x; t) is infinitely
differentiable with respect to t on the entire complex plane with the origin
and the negative real axis excluded. We shall need the following lemma.

LEMMA 5. Let the complex quantity t be neither zero nor negative. Then

1 ~I"

S:.rCx; t) = rT :t r Sn(x; t). (5.9)

Proof It follows from (5.8) that the right member of (5.9) is of the form

(5.10)
v=-co

',vhere Pn".(v) is a polynomial of degree r in v (having functions of t as
coefficients). This expression is of the form (5.6) and is therefore an expo­
nential Euler spline of degree n and order r. Its value for x = v, an integer,
is given by

1 d' ( v '-- tv = t"-I"r! dt' ( ) r ) .

Therefore, (5.9) follows from the uniqueness property of Theorem 1. I

An arbitrary polynomial p(v) of degree r can be expressed in the form

p(v) = t (~) LJlp(O),
l~O

and therefore the exponential Euler spline Sex) of degree n and order r that
interpolates {p(v) tv} can be expressed in the form

,.
Sex) = L t1LJlp(O) S:.,(x; t).

l~O
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Substituting for S;'ix; t) the expression obtained from (5.8) gives

r

Sex) = L LJlp(O) L Pn,iv) t vQn+1(x - v).
l=O 1'=-00

Consequently, the polynomial q(v) of (5.6) is given by

,.
q(v) = L Pn,,·(v) LJlp(O),

l~O

where

EXAMPLE 5. S;,o(x; t) = S2(X; t) is given in [0, 1] by

* "" _ 2(t - 1) (t - 1)2 2
S20(X, t) - 1 + t + 1 x + t + 1 x.

The expression in [0, 1] for S;'l(X; t) is

* . _ 4 (t - 1)(t + 3) 2

S2,1(X, t) - (t + 1)2 X + (t + 1)2 x,

obtained by differentiating (5.11) with respect to t.

6. THE LIMIT OF SnAx) AS n --+ w

(5.11)

In the case in which there is, for each n, a unique SnAx) satisfying (1.4)
and interpolating the data {yJ, do the cardinal splines SnAx) approach a
definite limiting function as n --+ w? We shall see that the answer is affir­
mative when P(x) has no negative zero.

Note that if P(x) has no negative zero, then SnAx) is, in fact, uniquely
determined by Theorem 2, because in such a case P(x) has no zeros in
common with any of the polynomials lln(x), since the zeros of the latter
polynomials are known to be all negative.

We shall consider first the case of (generalized) exponential Euler splines,
in which P(x) has only one (in general, multiple) zero. If a sequence {SnAx)}
satisfies (5.1) and interpolates at the integers the data {q(v) tv}, where q(x) E 'If,.,
then it is reasonable to conjecture that the limiting function is q(x) t x . How­
ever, we must bear in mind that t is not restricted to real values, and if

t = I t I eiB
,
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t" takes on an the values

I f I'" exp(itJ + 27TfLi)
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for all integers fL.
However, in the case of the simple exponential Euler splines (r = 0),

Schoenberg [7] has shown that if f is not negative,

lim Sn(x; f) = [ f I" ei ,,,,,
ll-KJ)

where
t = I f I ei~ (-7T < IX < 7T). (6.1)

In other words, the interpolating cardinal spline converges to the principal
value.

In order to prove an analogous result for exponential Euler splines of
order r, we shall need the following lemma.

LEMMA 6. For all real x and f cF 1,

S:,l(X + 1; t) = (x + 1) Sn(x; f)

lln+l(f) [S (.) S ; . )J
(n + l)(t _ 1) lln(t) "+1 X, f ~ n\X, t

Proof By (5.7),

(E - t) S:,1(X + 1; f) = Sn(X + 1; f).

On the other hand,

(E - f) Sn+1(X; f) = 0 = (E - t) Sn(X; f),

and it is easily verified that

(E - t)[(X + 1) Sn(X; f)] = Sn(X + 1; t),

(6.2)

In other words, both members of (6.2) yield identical results when operated
on with E - f. Accordingly, each member satisfies

F(x + 1) = tF(x) -:- Sn(x -1- 1; f).

It follows that (6.2) holds for all real x if it can be shown to hold in some
interval of unit width. Consider the interval -1 ~ x ~ 0, and let Bn(x)
denote the polynomial of degree 11 that coincides with S~,1(X + 1; t) in
(-1,0). By Theorem 3, Bn(x) has a unique expression of the form

(6.3)
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By means of (5.5) and the substitution

An,l(x + 2; t) = tAn,l(x + 1; t) + (1 - t) An(x + 1; t)

derived from (5.3), (6.3) can be rewritten in the form

where CI and C2 are uniquely determined by the relations

(6.5)

On the other hand, it follows from [7, (3.7) and (3.15)] that

IInCt) = (1jn!)(t - l)-n An(O; t)

and therefore the right member of (6.2) becomes

(n = 1,2,...),

For -1 ~ x ~ 0, this is equal to

(x + 1) An(x + 1; t) _ An+l(O; t) [ An+l(x + 1; t) _ AnCx + 1; t)]. (6.6)
An(O; t) An(O; t) tAn+l(O; t) tAn(O; t)

Now, (6.6) is of the form of the right member of (6.4), and, moreover, it
reduces to zero for x = -1 and to unity for x = O. Therefore (6.6) is the
polynomial of degree n uniquely determined by (6.4) and (6.5), and (6.2) is
established. I

Let p denote the shortest distance from t to the negative real axis. In other
words,

p = It [

= I Imt I

We then have

LEMMA 7. For I = 0, 1'00"

(Re t ;;:: 0)

(Re t < 0).

1 I d l IIn+l(t) I 1 I t I + p
7! (fil (n + 1)(t - 1) IIn(t) ~ I t - 1 II+! + pHI

.4.1'001 Since IIn(t) satisfies [7] the recurrence relation,

IIn+l(t) = (1 + nt)IIn(t) + t(1 - t)IIn'(t),
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we have

Il"+lU) II I 1 tIIn'U)
(/1 + 1)(t - 1) II,,(t) = n+T T t ~ 1 - \n --r- 1) IIuCt) .

We therefore consider the derivatives of tIIn'(t)jII,,(t).
Let the zeros of IIn(t) be '\ , ,'1.2 , ••• , An- 1 . Then,
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(6.7)

II.,,'(t)

IInet)
(6.8)

Consequently,

and so

r

n - 1 n-l 1
= (-1)1 l! j~ t(t - \)-1-1 - ~l (t - J\;)-IJ

for I = 1, 2, .... Since

1 ./ 1
-c----,----- ~ -
I t - Aj I p

for all j,

I
~ tIIn'(t) I oS: ( - 1) II I t I + ,0
dt1 IIn(t) '"'" n . ,01+1 '

and substitution in (6.7) gives

I
dl IIn+l(t) I ----- l! 11 - 1 l!(1 t I + ,0)

{jjl (Ii + 1)(t - 1) IIn(t) "::: I t - 1 :1~1 + n+T ,01+1

~ l![1 t - 1 1-1- 1 + (I t I + ,0) ,0-1-1).

A simple calculation shows that this is true also for I = O. I
We now prove

THEOREM 4. If t is not negative and not equal to 0 or 1, then for ellery
real x,

where 0: is gicen by (6.1).
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Proof Schoenberg has shown (see [7, Part III]) that, for all real x,

ISn(X; t) - I t I'" ei~x I < Mit I" y",

where M is a positive constant and y E (0, 1) is given by

y = max (I ~: I, I t:
1

I),
with

t" = log 1 t I + irx + 2hri.

(6.9)

We shall generalize this result by showing that for all real x and for
v = 0, 1, ...,

where Mix) is a positive continuous function ofx independent ofn. The proof
will be by induction on v. For v = 0, (6.10) reduces to Schoenberg's result,
taking Mo(x) = M. Suppose that (6.10) is true for v = 0, 1,..., r.

From (6.2) we obtain by r-fold differentiation with respect to t and division
by (I' + I)! ,

S~ r+1(x; t) = +x 1 S: 'r(x - 1; t)
• I' '

X [S~+1"'_I(X - 1; t) - S~,H(X - 1; t)].

Subtracting (r~l) I t Ix-r-l eia (x-r-l) from both sides and applying Lemma 7,
we have '

IS*. (x' t) - ( x ) I t I",-r-l ei~("'-"-I) I
n,'+1' I' + 1

:0:;;;~ IS* (x - l' t) - (X - 1) I t [",-,.-1 ei"(,,,-r-l) I
I' + 1 n,r , I'

2(n + 1) I' [1 I t I + p]
+ r+ 1 to I t - 1 11+1 + pHI

X Mr_1(x - 1) I t 1,,-rH-l (n + 1)r-l yn

:0:;;; M r+1(x)(n + 1)'+1 I t [X-r-l y",
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where

i\It-!-lx) = r" ~ 1 iVIr(x - 1)
, I

2 tI, I t i + P] I + I' '1 '- 1-\-'.- --1 > [, 1 II 1 "'I pl+l ,1> r-I\.-": - I". I'-+- ~ t- +. l=O I, J
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(6.11)

Note that Mr(x) as defined by the recurrence (6.11) with Mo(x) = [v! is
positive and independent of n, as required. I

Let us now turn to the general case in which the zeros of P(x) are not
restricted to a single value. Let 1"1 , 1"2 , ••• , rh be the distinct zeros of P(x), and
let rj have multiplicity mj . Then,

I l11j = k.
j~l

Let the data {Y,,} satisfy (1.2). Then, there are uniquely determined
polynomials

such that
h

Yv = L: qiv) r/
j~l

for all integers e'. We shall need the following lemma.

(6.12)

LEM1,lA 8. Let {Yv} satisfy (1.2) and therefore be of the form (6.12). Then,
a cardinal spline Sex) (of degree n) satisfies

S(v) = Yv

for all v ifand only if it can be expressed in the form

11.

Sex) = L: S(j)(x),
j~l

(6.13)

where, for each j. S(j)(x) is an exponential Euler spline of degree n and order
raj - 1, having the base rj , and interpolating at the integers the data {q;(v) r/}.

Proof The sufficiency is obvious. To prove the necessity, note that IjP(x)
has a condensed partial fraction expansion of the form

(6.14)
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where lYj(x) is a uniquely determined element of 7Tm .-1 • Now, let
}

(j = 1,2,... , h).
P(x)

14x) = ex - rj)""

Then, multiplication of (6.14) by P(x) gives

h

1 = I cxlx) q;j(X),
j~l

(6.15)

an identity in x. Now let S(j)(x) be defined by

Sw(X) = uiE) q;iE) Sex) (j = 1, 2, ... , h). (6.16)

Since:xlx) and q;j(x) are polynomials and a cardinal spline translated by an
integer remains a cardinal spline of the same degree, S(j)(x) as defined by
(6.16) is a cardinal spline of the same degree as Sex). We must show that it
has the required properties.

In view of (6.15), (6.13) is clearly satisfied. Moreover,

(E - rj)m j Six) = lYlE) peE) Sex) = 0,

which shows that S(j)(x) is an exponential Euler spline of order Inj - 1
having the base rj . It follows that S(j)(x) interpolates at the integers {fJlv) r/},
where fJlx) is some element of 7T"';_1 • Then, (6.13) gives

h

I fJiv) r/ = S(v) = Yv .
j~1

Since the representation (6.12) is unique, we must have

(j = 1, 2, ... , h),

and consequently,

(6.17)(j = 1,2,... , h)S(J)(v) = qlv) 1'/

for all integers v. I
Note that if rj and rl are a conjugate complex pair, then it is easily seen

from (6.14) and (6.16) that S(j)(x) and Sw(x) are conjugates, so that Sex)
is a real-valued function, as it must be.

THEOREM 5. Let P(x) have no zero equal to 0, 1 or any negative quantity,
and let Yv be given by (6.12). Let S,,(x) denote the unique cardinal spline of
degree n satisfying (1.1) and interpolating {Yv} at the integers. Then,

h

lim Sn(x) = I q,{x) I rj I'" exp(ilYjx)
1l--4'XJ j=l

(6.18)
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for all real x, where

(j = 1, 2, ... , h).

Proof By Lemma 8, Sn(x) can be expressed in the form (6.13), where
(6.17) holds. There exist uniquely determined coefficients djl (j = 1,2.... , h;
I = 0, 1, ... , mj - 1) such that

(J = 1,2,... , II). (6.19)

Consequently, by (6.17) and the definition of S~,I(X),

I1f,~l

S(j)(x) = L: djlr/S:.zCx ),
'~O

and therefore, by Theorem 4,

In view of (6.19), summing with respect to j then gives (6.18). I
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